Glauber Dynamics for the Mean-Field Potts Model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glauber Dynamics for the Mean-field Potts Model

We study Glauber dynamics for the mean-field (Curie-Weiss) Potts model with q > 3 states and show that it undergoes a critical slowdown at an inverse-temperature βs(q) strictly lower than the critical βc(q) for uniqueness of the thermodynamic limit. The dynamical critical βs(q) is the spinodal point marking the onset of metastability. We prove that when β < βs(q) the mixing time is asymptotical...

متن کامل

Censored Glauber Dynamics for the Mean Field Ising Model

We study Glauber dynamics for the Ising model on the complete graph on n vertices, known as the Curie-Weiss Model. It is well known that at high temperature (β < 1) the mixing time is Θ(n logn), whereas at low temperature (β > 1) it is exp(Θ(n)). Recently, Levin, Luczak and Peres considered a censored version of this dynamics, which is restricted to non-negative magnetization. They proved that ...

متن کامل

Mixing of the Glauber dynamics for the ferromagnetic Potts model

We present several results on the mixing time of the Glauber dynamics for sampling from the Gibbs distribution in the ferromagnetic Potts model. At a fixed temperature and interaction strength, we study the interplay between the maximum degree (∆) of the underlying graph and the number of colours or spins (q) in determining whether the dynamics mixes rapidly or not. We find a lower bound L on t...

متن کامل

The Mixing Time Evolution of Glauber Dynamics for the Mean-field Ising Model

We consider Glauber dynamics for the Ising model on the complete graph on n vertices, known as the Curie-Weiss model. It is well-known that the mixing-time in the high temperature regime (β < 1) has order n logn, whereas the mixing-time in the case β > 1 is exponential in n. Recently, Levin, Luczak and Peres proved that for any fixed β < 1 there is cutoff at time 1 2(1−β)n logn with a window of...

متن کامل

Glauber Dynamics for the Mean-field Ising Model: Cut-off, Critical Power Law, and Metastability

A. We study the Glauber dynamics for the Ising model on the complete graph, also known as the Curie-Weiss Model. For β < 1, we prove that the dynamics exhibits a cut-off: the distance to stationarity drops from near 1 to near 0 in a window of order n centered at [2(1 − β)]−1n log n. For β = 1, we prove that the mixing time is of order n3/2. For β > 1, we study metastability. In particula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Physics

سال: 2012

ISSN: 0022-4715,1572-9613

DOI: 10.1007/s10955-012-0599-2